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Abstract

Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types
of central nervous system (CNS) injuries. Potential signaling mechanisms driving the conversion of astrocytes into ‘‘reactive’’
phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the
blood-brain barrier (BBB). As denervation tools, neurotoxicants have the advantage of selective targeting of brain regions
and cell types, often with sparing of the BBB. Previously, we found that neuroinflammation and activation of the JAK2-STAT3
pathway in astrocytes precedes up regulation of GFAP in the MPTP mouse model of dopaminergic neurotoxicity. Here we
show that multiple mechanistically distinct mouse models of neurotoxicity (MPTP, AMP, METH, MDA, MDMA, KA, TMT)
engender the same neuroinflammatory and STAT3 activation responses in specific regions of the brain targeted by each
neurotoxicant. The STAT3 effects seen for TMT in the mouse could be generalized to the rat, demonstrating cross-species
validity for STAT3 activation. Pharmacological antagonists of the neurotoxic effects blocked neuroinflammatory responses,
pSTAT3tyr705 and GFAP induction, indicating that damage to neuronal targets instigated astrogliosis. Selective deletion of
STAT3 from astrocytes in STAT3 conditional knockout mice markedly attenuated MPTP-induced astrogliosis. Monitoring
STAT3 translocation in GFAP-positive cells indicated that effects of MPTP, METH and KA on pSTAT3tyr705 were localized to
astrocytes. These findings strongly implicate the STAT3 pathway in astrocytes as a broadly triggered signaling pathway for
astrogliosis. We also observed, however, that the acute neuroinflammatory response to the known inflammogen, LPS, can
activate STAT3 in CNS tissue without inducing classical signs of astrogliosis. Thus, acute phase neuroinflammatory responses
and neurotoxicity-induced astrogliosis both signal through STAT3 but appear to do so through different modules, perhaps
localized to different cell types.
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Introduction

Astrogliosis, the ‘‘reactive’’ state of astrocytes, is a pathological

hallmark of all types of CNS injuries [1–5]. A dominant feature of

astrogliosis is cellular hypertrophy with an attendant accumulation

of GFAP-enriched intermediate filaments [3,6,7]. Different types

of injuries and multiple molecular signaling pathways are able to

trigger this common feature of astrocytic reactivity. Nevertheless, a

wide spectrum of potential molecular and cellular features of

astrogliosis also have been described [8,9]; qualitatively dissimilar

insults of varying severity (e.g., neurodegenerative disease,

neurotrauma or neurotoxicity) may engender varying degrees of

astrogliosis with different morphological features, molecular

underpinnings and functional consequences [8–10]. Thus, focus-

ing on limited numbers of injury models to investigate astrogliosis

may lead to generalizations that do not apply to all types of

astroglial responses to injury.

Here we examined signaling events associated with astrocytic

responses to neural damage resulting from diverse neurotoxic

insults. Using neurotoxicants to instigate astrogliosis is advanta-

geous because different brain regions and often, different cell types

within a given region, can be selectively targeted. Previously, we

found that different neurotoxicants result in brain-region-specific

astrogliosis tightly linked to the damaged target, as well as the

dose, time and duration of the neurotoxic effect, regardless of the

region or cell type affected [11]. Because systemic administration

of these neurotoxicants often does not damage the blood-brain

barrier (BBB), the observed astroglial responses are not compli-

cated by contribution of blood-borne factors at the sites of damage,

as is the case for other models. Moreover, pharmacological and

genetic manipulations of neurotoxicity reveal that neurotoxic

injuries of neuronal targets serve as the stimulus to initiate

astrogliosis, thereby ruling out direct effects on the astrocytes

themselves. Using diverse neurotoxicity models to delineate

common signaling mechanisms responsible for instigating astro-

gliosis offers an approach for pursuit of therapeutic interventions

based on manipulating astroglial reactivity.
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Previously, we showed that MPTP-induced dopaminergic

neurotoxicity was linked to rapid but transient phosphorylation

of STAT3Tyr 705, and its translocation to astrocytic nuclei, prior to

the induction of GFAP mRNA and protein [12]. Enhanced

expression of proinflammatory signaling through the JAK2-

STAT3 pathway was observed prior to onset of STAT3 activation.

Other proinflammatory mediators known to feed into the JAK-

STAT3 signaling cascade (e.g., TNF-a and IL-1b) [13] also

showed enhanced expression prior to phosphorylation of STAT3

and induction of GFAP [14]. These findings suggested that

neuroinflammation-mediated activation of the STAT3 pathway

may be associated with induction of astrogliosis, findings consistent

with prior observations for a role of STAT3 in astroglial reactivity

and scar formation resulting from neurotrauma and ischemia [15–

19]. Here we sought to determine the role of enhanced astrocytic

STAT3 signaling in multiple mechanistically distinct models of

neurotoxicity. Because proinflammatory signaling in the CNS can

occur in the absence of neural damage [20–23] we also examined

whether such neuroinflammatory responses could activate STAT3

without inducing astrogliosis. While our findings strongly implicate

astroglial STAT3 activation as a common feature in all of our

neurotoxicity models, we also observed that acute neuroinflam-

matory responses to the known inflammogen, LPS, can activate

STAT3 without inducing GFAP up-regulation, a hallmark of

astrogliosis. Thus, acute phase neuroinflammatory responses and

neurotoxicity-induced astrogliosis signal through STAT3 but

appear to do so through different STAT3 modules.

Materials and Methods

The following drugs and chemicals were kindly provided by or

obtained from the sources indicated: lipopolysaccharide (LPS;

Sigma Chemical Co., St. Louis, MO), 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP; Aldrich, Milwaukee, WI), metham-

phetamine (METH; Sigma), amphetamine (AMP; Sigma), 3,4-

methylenedioxymethamphetamine (MDMA; Research Technolo-

gy Branch of the National Institute on Drug Abuse, Rockville,

MD), 3,4-methylenedioxyamphetmine (MDA; Research Technol-

ogy Branch of the National Institute on Drug Abuse), kainic acid

(KA; Sigma), trimethyltin (TMT; K&K Laboratories, Division of

ICN Biochemical, Cleveland, OH), nomifensine (Sigma), Ethanol

(Sigma), diazepam (Sigma), minocycline (Sigma), corticosterone

(CORT; Steraloids, Inc., Newport, RI), bicinichoninic acid

protein assay reagent and bovine serum albumin (Pierce Chemical

Co., Rockford, IL). The materials used in the glial fibrillary acidic

protein (GFAP) ELISA have been described in detail [24,25]. The

materials used in the tyrosine hydroxylase (TH) ELISA have been

described previously [12,26,27]. All other reagents and materials

were of at least analytical grade and were obtained from a variety

of commercial sources.

Animals
Studies on MPTP, METH, AMP, MDMA, MDA and TMT

used male C57BL/6J mice; studies on KA used male FVB/NJ

mice; LPS studies used female C57BL/6J mice. An additional

study on TMT used male Long-Evans rats where indicated.

Figure 1. STAT3 activation precedes GFAP up regulation in multiple models of striatal neurotoxicity. Mice were administered
dopaminergic neurotoxicants, MPTP, AMP, METH, MDA and MDMA with saline (0.9%) as a control and were killed at 6, 12 and 72 hours post dosing,
time points known to encompass the onset of dopaminergic neurotoxicity and the subsequent activation of microglia and astroglia [12]. Mice were
killed by focused microwave irradiation to preserve steady-state phosphorylation of pSTAT3tyr 705 and phosphorylation was analyzed by
quantification of scans of pSTAT3tyr705 immunoblots. Representative immunoblot data from two different animals killed at each time point are
presented above the quantitative data obtained from scans and are denoted by a bracket. Separate groups of mice were used to prepare total RNA
from one side of the brain for qRT-PCR analysis of Gfap mRNA and to prepare total protein homogenates from the other side of the brain for ELISA of
GFAP and TH. Except for the representative immunoblot duplicates, all data points represent mean 6 SEM, N = 5. Statistical significance was
measured by one-way ANOVA with Fisher’s LSD Method of post hoc analysis. Statistical significance of at least p,0.05 for the neurotoxicant exposed
groups in comparison to saline controls is denoted by *. See Methods for dosing regimen (multi-dose METH).
doi:10.1371/journal.pone.0102003.g001
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C57BL/6J or FVB/NJ mice (n = 5 mice per group) 4–6 weeks of

age were purchased from Jackson Labs (Bar Harbor, ME). Long-

Evans male rats were purchased from Charles River Laboratories

International, Inc. (Wilmington, MA).

Mice selectively deficient in STAT3 in astrocytes (STAT3-

CKO) using GFAP promoter-directed Cre/loxP technology as

described previously [17,28] were used for GFAP and TH protein

quantification after MPTP exposure.

All procedures were performed within protocols approved by

the Institutional Animal Care and Use Committee of the Centers

for Disease Control and Prevention, National Institute for

Occupational Safety and Health, and the animal colony was

certified by the American Association for Accreditation of

Laboratory Animal Care. Upon receipt, male mice were housed

individually and females were housed in groups of 6 in a

temperature-controlled (2161uC unless otherwise stated) and

humidity-controlled (50610%) colony room maintained under

filtered positive-pressure ventilation on a 12 h light/12 h dark

cycle beginning at 0600 EDT. The plastic tub cages were 46 cm in

length by 25 cm in width by 15 cm in height; cage bedding

consisted of heat-treated pine shavings spread at a depth of

approximately 4 cm. Food (Purina rat/mouse chow) and water

were available ad libitum.

Dosing
Neurotoxicants were administered to mice as follows: MPTP

(12.5 mg/kg, s.c.), AMP (10 mg/kg, s.c., 3 injections at 2 h

intervals), METH (20 mg/kg, s.c., 3 injections at 2 h intervals

(specified as multi-dose in appropriate figure legends) or a single

dose of 20 mg/kg, s.c. (specified as single dose in appropriate

figure legends), MDA (10 mg/kg, s.c., 3 injections at 2 h intervals),

MDMA (20 mg/kg, s.c., 3 injections at 2 h intervals), KA (20 mg/

kg, s.c.) and TMT (0.5 mg/kg, i.p.). TMT was administered to rats

at a dosage of 8.0 mg/kg, i.p. All dosages were administered as the

base compound.

Pharmacologic and environmental manipulations were admin-

istered to mice as follows: Nomifensine (25 mg/kg, s.c.) was given

30 min before MPTP, Ethanol (3 g/kg, s.c.) was given 30 min

Figure 2. STAT3 Activation precedes GFAP up regulation in diverse models of damage affecting different brain areas. Mice were
administered the hippocampal neurotoxicant KA and mice and rats were administered the hippocampal neurotoxicant, TMT. Mice were killed by
focused microwave irradiation to preserve steady-state phosphorylation of pSTAT3tyr 705 and phosphorylation was analyzed by quantification of
scans of pSTAT3tyr705 immunoblots. Representative immunoblot data from two different animals killed at each time point are presented above the
quantitative data obtained from scans and are denoted by a bracket. Separate groups of mice were used to prepare total RNA from one side of the
brain for qRT-PCR analysis of Gfap mRNA and to prepare total protein homogenates from the other side of the brain for ELISA of GFAP. Except for the
representative immunoblot duplicates, all data points represent mean 6 SEM, N = 5 (with the exception of pSTAT3 expression in TMT treated mice in
which N = 2). Statistical significance was measured by one-way ANOVA with Fisher’s LSD Method of post hoc analysis. Statistical significance of at
least p,0.05 for the neurotoxicant exposed groups in comparison to saline controls is denoted by *. See Methods for dosing regimen.
doi:10.1371/journal.pone.0102003.g002
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Figure 3. STAT3 Activation is localized to astrocytes after hippocampal as well as striatal neurotoxicity. Mice were administered METH
or KA and were processed for immunohistochemical analyses of GFAP to identify astrocytes (denoted by arrows) and STAT3. GFAP immunostaining
revealed hypertrophied striatal astrocytes at 12 hours after METH and were further evident by 72 hours. STAT3 staining of striatal nuclei indicative of
its translocation and, therefore, activation, was apparent at 72 hours; STAT3 activation was localized to astrocytes as evidenced by an increase in
nuclear stating in the merged images at 12 and 72 hours. STAT3 and GFAP staining were not evident in saline-treated striatum sections. In the
hippocampus, GFAP immunostaining revealed astrocytes in saline-treated mice; enhanced immunostaining of astrocytes was evident by 72 hours
after administration of KA. STAT3 staining of nuclei in hippocampus was prominent at 12 and 72 hours after KA but not evident in saline controls;
merging of GFAP and STAT3 images showed increased nuclear staining of GFAP positive cells at 12 and 72 hours post KA suggestive of the
translocation of and activation of STAT3 in astrocytes. Merge of GFAP and STAT3 is shown with DAPI for clarity of nucleus location. Arrows
corresponding to GFAP positive astrocytes are included in each panel to focus on the points of interest. Scale bars = 20 mm. See Methods for dosing
regimens.
doi:10.1371/journal.pone.0102003.g003

STAT3 Regulates Astrogliosis Induced by Neurotoxicity

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e102003



before METH (20 mg/kg, s.c.), Diazepam (30 mg/kg, i.p.) was

given 30 min before KA, and CORT (20 mg/kg, s.c.) was given

30 min prior to MPTP, METH, TMT or LPS. Mice were kept at

15uC for 24 hours and then treated with METH (20 mg/kg, s.c.)

and kept at 15uC until killed.

LPS was used as a known inflammogen and administered at a

dosage of 2 mg/kg, s.c. or, in the dose-response experiment, at a

dosage of 1–5 mg/kg, i.p. [5].

The post-dosing time points were chosen to capture peak

expression of cytokines (6–12 hrs.), pSTAT3 (12 hrs) and GFAP

(12–72 hrs) based on our previous findings for MPTP [12],

substituted amphetamines [29], LPS (unpublished data) and our

historical data for induction of GFAP on all compounds used (e.g.,

see [30]).

Brain dissection and tissue preparation
Mice were killed by decapitation and whole brains were

removed from the skull with the aid of blunt curved forceps.

Striatum, hippocampus, cortex, cerebellum and olfactory bulb

were dissected free hand on a thermoelectric cold plate (Model

TCP-2, Aldrich Chemical Co., Milwaukee, WI) using a pair of fine

curved forceps (Roboz, Washington, DC). Brain regions from one

side of the brain were frozen at -85uC and used for subsequent

isolation of total RNA; brain regions from the other side of the

brain were used for total and specific protein analysis. The right-

side brain regions were weighed, homogenized with a sonic probe

(model XL-2005, Heat Systems, Farmingdale, NY) in 10 volumes

of hot (90–95uC) 1% sodium dodecyl sulfate, and stored frozen at

270uC before total protein assay and immunoassay of GFAP and

TH.

A separate set of mice were used for pSTAT3tyr 705

quantification and were killed by focused microwave irradiation

(Muromachi Kikai, Inc., Tokyo, Japan; Model TMW-4012C, 3.5

KW applied power, 0.90 sec) to preserve steady-state protein

phosphorylation [31]. Brains were dissected freehand, weighed

and homogenized in 10 volumes of hot 1% SDS and then stored at

280uC until assayed. We note that while this mode of sacrifice

may be essential for preservation of phosphorylation of many

phosphoproteins [31,32], pSTAT3tyr 705 can successfully be

preserved by rapid decapitation and sample denaturation in hot

1% SDS [31].

For immunohistochemistry experiments, animals were transcar-

dially perfused with saline (0.9%) followed by formalin (10%) to fix

the brain tissue. Brains were removed and kept in formalin (10%)

until embedded in paraffin. Tissue was cut and placed in Paraform

cassettes (Sakura Finetek, Torrance, CA) for subsequent process-

ing by dehydration, clearing and infiltration overnight with

paraffin using a Tissue-Tek VIP 5 Vacuum Infiltration Processor

(Sakura Finetek). Briefly, the brains were processed in 10%

formalin, 70%, 80%, 95% and 100% ethanol, xylene and then

paraffin. The cassette with paraffin-embedded tissue was then

attached to a mold (Sakura Finetek) with paraffin.

RNA isolation, cDNA synthesis, and real-time PCR
amplification

Total RNA from striatum, hippocampus, cortex, cerebellum

and hypothalamus were isolated using Trizol reagent (Invitrogen,

Grand Island, NY) and Phase-lock heavy gel (Eppendorf AG,

Hamburg, Germany). The RNA was further cleaned using

RNeasy mini spin column (Qiagen, Valencia, CA). Total RNA

Figure 4. STAT3 Activation does not occur in non-damaged brain regions in multiple models of neurotoxicity. Mice were administered
METH, KA or TMT with saline (0.9%) as a control and were killed by focused microwave irradiation at 12 hrs. post dosing and by decapitation at
72 hours post dosing. Multiple ‘‘non-target’’ brain regions for each neurotoxicant were sampled for activated STAT3 (12 hours post dosing) and levels
of GFAP (72 hours post dosing). All data points represent mean 6 SEM, N = 5. Statistical significance was measured by one-way ANOVA. Where
significant differences were found, Fisher’s LSD Method of post hoc analysis was performed. Statistical significance of at least p,0.05 for the
neurotoxicant exposed groups in comparison to saline controls is denoted by *. See Methods for dosing regimen (multi-dose METH).
doi:10.1371/journal.pone.0102003.g004
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(1 mg) was reverse transcribed to cDNA using SuperScript II

RNase H2 and oligo (dT)12-18 primers (Invitrogen) in a 20 mL

reaction. Real-time PCR analysis of Glyceraldehyde-3-phosphate

dehydrogenase (Gapdh), tumor necrosis factor-alpha (Tnf-a),

chemokine (C-C motif) ligand 2 (Ccl2), Leukemia inhibitor factor

(Lif), Oncostatin M (Osm) and glial fibrillary acidic protein (Gfap)

was performed in an ABI PRISM 770 sequence detection system

(Applied Biosystems, Carlsbad, CA) in combination with TaqMan

chemistry. Specific primers and dual-labeled internal fluorogenic

(FAM/TAMRA) probe sets (TaqMan Gene Expression Assays) for

these genes were procured from Applied Biosystems and used

according to the manufacturer’s recommendations. All PCR

amplifications (40 cycles) were performed in a total volume of

50 mL, containing 1 mL cDNA, 2.5 mL of the specific Assay of

Demand primer/probe mix, and 25 mL of Taqman Universal

master mix. Sequence detection software (version 1.7; Applied

Biosystems) results were exported as tab-delimited text files and

imported into Microsoft Excel for further analysis. Relative

quantification of gene expression was performed using the

comparative threshold (CT) method as described by the manufac-

turer (Applied Biosystems; User Bulletin 2). Changes in mRNA

expression levels were calculated after normalization to Gapdh.

The ratios obtained after normalization are expressed as fold

change over corresponding saline-treated controls.

Protein assay
Total protein was determined by the bicinchoninic acid method

[33] using bovine serum albumin as standard.

GFAP and TH assays
GFAP was assayed in accordance with a previously described

ELISA [24,25]. In brief, a rabbit polyclonal antibody to GFAP

(1:300; DAKO, Carpenteria, CA) was coated on the wells of

Immulon-2 microliter plates (Thermo Labsystems, Franklin, MA).

The sodium dodecyl sulfate homogenates and standards were

diluted in phosphate-buffered saline (pH 7.4) containing 0.5%

Triton X-100. After blocking non-specific binding with 5% non-fat

dairy milk, aliquots of the homogenate and standards were added

to the wells and incubated. Following washes, a mouse monoclonal

antibody to GFAP (1:200; EMD Millipore-Calbiochem, Billerica,

MA) was added to ‘sandwich’ the GFAP between the two

antibodies. An alkaline phosphatase-conjugated antibody directed

against mouse IgG (1:2000; Jackson ImmunoResearch, West

Grove, PA) was then added and a colored reaction product was

obtained by subsequent addition of the enzyme substrate p-

nitrophenol (Bio-Rad Laboratories, Hercules, CA). Quantification

was achieved by spectrophotometry of the colored reaction

product at 405 nm in a microplate reader, Spectra Max Plus,

Figure 5. STAT3 activation, like GFAP up regulation, results from damage associated with multiple models of neurotoxicity:
evidence from neuroprotective agents. Mice were administered MPTP, METH, or KA alone or after pretreatment with nomifensine (for MPTP),
ethanol or low ambient temperature (for METH) or diazepam (for KA). Mice were killed at 12 hours post dosing by focused microwave irradiation for
analyses of pSTAT3tyr 705 by quantitative immunoblotting or were killed by decapitation at 72 hours post dosing for analyses of GFAP and TH by
ELISA. Striatal samples were assayed after MPTP and METH and hippocampal samples were assayed after KA. Representative immunoblot data from
two different animals for each treatment condition are presented above the quantitative data obtained from scans. Except for the representative
immunoblot duplicates, all data points represent mean 6 SEM, N = 5. Statistical significance was measured by two-way ANOVA with Fisher’s LSD
Method of post hoc analysis. * denotes statistical significance of at least p,0.05 for the neurotoxicant alone or pretreated groups compared to saline
controls and # denotes statistical significance of at least p,0.05 for neuroprotectant pretreated groups compared to neurotoxicant only exposed
groups. See Methods for dosing regimen (single dose METH).
doi:10.1371/journal.pone.0102003.g005
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and analyzed using Soft Max Pro Plus software (Molecular

Devices, Sunnyvale, CA). The amount of GFAP in the samples

was calculated as micrograms of GFAP per milligram total

protein.

TH holoenzyme protein was assessed using a fluorescence-based

ELISA developed in the laboratory [12]. The protocol was

essentially similar to that for the GFAP assay except that a mouse

monoclonal antibody to TH (1:400; Sigma-Aldrich, St. Louis) was

used as the plate capture antibody and a rabbit polyclonal

antibody (EMD Millipore-Calbiochem, Billerica, MA) was used to

‘sandwich’ TH protein. The amount of sandwich antibody bound

to TH was then detected using a peroxidase-labeled antibody

directed against rabbit IgG (Artisan Technology Group, Cham-

paigne, IL). Peroxidase activity was detected using the fluorogenic

substrate Quantablu (Pierce), which has excitation and emission

maxima of 325 and 420 nm, respectively (read at 320/405 nm).

The amount of TH in the samples was calculated and expressed as

micrograms TH per milligram total protein.

pSTAT3 immunoblot analysis
Activation of the STAT3 pathway was assessed by quantifying

pSTAT3tyr705 using immunoblot analysis with detection of

fluorescent signals using an infrared fluorescence scanner (Licor

Biosciences, Lincoln, NE) or with detection using an ECL

chemiluminescent substrate (Amersham Biosciences, Piscataway,

NJ) captured onto x-ray film (Fuji Medical systems, Stamford, CT)

as described previously [12,19]. Briefly, following incubation with

primary antibodies (anti-phospho-STAT3tyr705[1:500]), blots were

washed with phosphate buffered saline with 0.1% Tween 20 and

incubated with fluorescent-labeled secondary antibodies (1:2500)

for 1 h prior to scanning by Licor or using a Personal

Densitometer (Molecular Dynamics, Sunnyvale, CA).

Histology
For immunohistochemical analysis of STAT3 and GFAP the

paraffin embedded brains were sectioned with a manual rotary

Microm microtome (Thermo Scientific, Kalamazoo, MI) into

6 mm sections and floated onto Superfrost + slides (Fisher

Scientific). The slides were warmed at 60uC for 20 min. To

dissolve away the paraffin, slides were put through xylene and then

100% followed by 95% ethanol washes. Following an overnight

incubation in primary antibody STAT3 (rabbit;1:300; Cell

Signaling Technology, Inc., Danvers, MA); GFAP (chicken;1:300;

Abcam, Cambridge, MA) sections were rinsed in PBS and

incubated with secondary antibody (for STAT3, 1:250; for GFAP

1:250) for 4 hours at room temperature. The sections were rinsed

and coverslipped with prolong gold antifade with DAPI mountant

(Life Technologies, Grand Island, NY). The sections were

visualized using an Olympus AX70 microscope with a PlanApo

40x 0,85 NA objective lens and images captured using Cell Sens

Dimension software with the Olympus DP73 digital camera

attached to the microscope. Post-processing of images was done

according to accepted practices and image integrity guidelines

(e.g., [34,35]). Specifically, the tone was normalized in all images

and STAT3 images were sharpened.

Statistics
All analyses were performed using SigmaPlot (version 11)

statistical software. The test of significance was performed using

either one or two way ANOVA followed by Fisher LSD test of log

transformed data. Values were considered statistically significant at

5% level of significance (p,0.05). Graphical representations are

mean 6 SEM.

Results

STAT3 activation coincides with the onset of damage and
precedes GFAP up regulation in multiple models of
striatal neurotoxicity

Using the known dopaminergic neurotoxicant, MPTP, as a

chemical denervation tool, we previously demonstrated that

activation of the JAK2/STAT3 pathway in astrocytes, in vivo,

precedes the up regulation of the astrocyte intermediate filament

protein, GFAP, a hallmark of astrogliosis [12]. If the JAK2/

STAT3 pathway is a key to induction of astrogliosis, then like

astrogliosis, phosphorylation of STAT3tyr705 should be associated

with multiple models of CNS neurotoxicity. To assess this

possibility we began by examining the time-course of STAT3

phosphorylation in relation to the expression of GFAP following

the administration of multiple neurotoxic insults known to damage

dopaminergic nerve terminals in the striatum (Fig. 1). In

agreement with our prior findings, MPTP resulted in a time-

Figure 6. Conditional deletion of STAT3 blocks neurotoxicant-
induced GFAP up regulation. Wild type (C57), Stat3 (+/+) or Stat3
(2/2) mice were administered MPTP (12.5 mg/kg, s.c.) and killed at 12
and 72 hours post dosing. Striatal GFAP and TH were measured by
ELISA. All data points represent mean 6 SEM, N = 5. Statistical
significance was measured by two-way ANOVA with Fisher’s LSD
Method of post hoc analysis. Statistical significance of at least p,0.05
for the MPTP-exposed groups is denoted by * as compared to wild-type
controls (C57) and by # as compared to the wild-type (C57) and
Stat3+/+ groups.
doi:10.1371/journal.pone.0102003.g006
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dependent decrease in striatal TH consistent with the loss of

dopaminergic terminals. Coincident with this nerve terminal

damage, STAT3 was activated by phosphorylation on Tyr 705,

followed by the induction of Gfap mRNA, and the enhanced

expression of GFAP. Amphetamine and a series of its substitutes

(METH, MDA, and MDMA), all also known to damage

dopaminergic terminals in the mouse [29,36], showed the same

relationship among loss of TH, activation of STAT3, and

induction of GFAP (mRNA and protein). Dexfenfluramine, an

amphetamine that does not damage the striatum [29,36], did not

activate STAT3 or induce the expression of GFAP (data not

shown). Non-phospho STAT3 levels were not affected by these

dopaminergic neurotoxicants.

STAT3 activation precedes GFAP up regulation in diverse
models of damage affecting multiple brain areas

If activation of STAT3 represents a signaling mechanism

common to astrogliosis, it should occur in any of the brain regions

damaged by the varied types of neurotoxic insults. To address this

issue we administered neurotoxicants known to damage the

hippocampus and cause an ensuing astrogliosis (Fig. 2). We found

that the excitotoxic compound, KA, as well as the organotin

neurotoxicant, TMT, resulted in an enhanced expression of GFAP

preceded by activation of STAT3 in hippocampus. TMT causes

hippocampal damage in both mice and rats and we observed

enhanced expression of GFAP preceded by activation of STAT3

in the rat, and a trend toward activation of STAT3 in the mouse

that did not reach significance, likely due to a low N. Collectively,

these data show that phosphorylation of STAT3tyr 705 is associated

with the induction of astrogliosis in multiple models of neurotox-

icity affecting different brain regions and causing damage via

different mechanisms. As with the dopaminergic neurotoxicants,

the increases in phospho-STAT3tyr 705 could not be attributed to

increases in STAT3.

STAT3 activation is localized to astrocytes after striatal
and hippocampal neurotoxicity

Previously, we showed that damage to dopaminergic nerve

terminals from a single dose of the dopaminergic neurotoxicant,

MPTP, resulted in striatal-selective increases in GFAP and

activation of STAT3 localized to astrocytes. Here we determined

if astrocytic localization of STAT3 also would be associated with

the astrocytic response to METH-induced dopaminergic neuro-

toxicity in striatum and KA-induced neurotoxicity in hippocampus

(Fig. 3). Damage to dopaminergic nerve terminals in striatum by a

single 20 mg/kg dose of METH resulted in enhanced immuno-

staining of GFAP (denoted by arrows), consistent with astrogliosis

and the previously documented increases in striatal GFAP

[27,29,37]. Enhanced GFAP staining was detected as early as

12 hours after METH. STAT3 immunostaining was used to

gauge translocation and enrichment of nuclear STAT3 in

astrocytes [12]. Merging of GFAP and STAT3 and GFAP and

STAT3 with DAPI immunostaining showed enhanced nuclear

and perinuclear staining at both 12 and 72 hours after METH.

STAT3 staining alone showed localization to the nucleus by

72 hours after METH. As with the damage to striatum

engendered by MPTP and amphetamines, damage to hippocam-

pus by a single 20 mg/kg dose of KA resulted in enhanced

immunostaining of GFAP (denoted by arrows; Fig. 3) consistent

with the previously documented increase in hippocampal GFAP

(Fig. 2). Enhanced GFAP immunostaining was observed as early as

12 hours after KA and increased by 72 hours after KA. Merging

of GFAP and STAT3 and GFAP and STAT3 with DAPI

immunostaining showed enhanced nuclear staining localized to

astrocytes that appeared to increase between 12 and 72 hours after

Figure 7. STAT3 activation is preceded by enhanced expression of proinflammatory ligands in multiple models of neurotoxicity.
Mice were administered MPTP, AMP, METH, MDA, MDMA, KA and TMT with saline (0.9%) as a control and were killed at 6, 12 and 72 hours post
dosing. Total RNA was prepared from striatum (MPTP, AMP, METH, MDA and MDMA) or hippocampus (KA and TMT) for qRT-PCR analysis of Tnf-a,
Osm, Ccl2 or Lif. All data points represent mean 6 SEM, N = 5. Statistical significance was measured by one-way ANOVA with Fisher’s LSD Method of
post hoc analysis. Statistical significance of at least p,0.05 for the neurotoxicant exposed groups in comparison to saline controls is denoted by an
asterisk. See Methods for dosing regimen (multi-dose METH).
doi:10.1371/journal.pone.0102003.g007
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KA. STAT3 staining alone was largely nuclear and was most

apparent at 72 hours after administration of KA. STAT3

immunostaining was not observed in saline controls for striatum

or hippocampus. Together, these observations are consistent with

an astrocytic localization of activated STAT3 in association with

the induction of astrogliosis.

STAT3 activation does not occur in non-damaged brain
regions in multiple models of neurotoxicity

Toxicant-induced astrogliosis is restricted to the onset, duration,

and location of damage [11]. Therefore, areas of the CNS not

affected by a given neurotoxic exposure do not show astrogliosis.

Previously we have shown that activation of STAT3 and

astrogliosis due to MPTP-induced dopaminergic neurotoxicity is

restricted to the striatum and non-target regions of the brain

remain unaffected [12]. In agreement with the findings for MPTP,

brain regions not damaged by METH, KA, and TMT in our

mouse models, based on other indices of damage such as Fluoro-

Jade staining and argyrophilia ([38]; data not shown), did not show

an activation of STAT3 or induction of GFAP (with the exception

of a few very minor statistically significant changes) (Fig. 4). These

observations provide a further link to the activation of STAT3 as

an early biomarker of astrogliosis.

STAT3 activation, like GFAP up regulation, results from
damage associated with multiple models of
neurotoxicity: evidence from neuroprotective agents

If activation of STAT3, like astrogliosis, is linked to damage,

then neuroprotective agents that prevent damage should prevent

the activation of STAT3 and astrogliosis. Preventing MPP+ access

to striatal dopaminergic nerve terminals by pretreatment with the

dopamine transporter antagonist, nomifensine, is known to protect

against MPTP-induced dopaminergic neurotoxicity. In agreement

with our previous findings [12], pretreatment with nomifensine

prevented the activation of STAT3, induction of astrogliosis (as

measured by increases in GFAP levels) and the dopaminergic

neurotoxicity (decrease in TH) associated with MPTP-induced

neurotoxicity (Fig. 5). Lowering core temperature by prior

treatment with ethanol or by lowering ambient temperature is

known to protect against METH-induced neurotoxicity [36].

These interventions prevented the activation of STAT3, the

induction of astrogliosis and dopaminergic neurotoxicity due to

METH (Fig. 5). Diazepam can block or attenuate neurotoxicity

due to kainate [39]. Pretreatment with diazepam (30 mg/kg, i.p.)

blocked kainate-induced activation of STAT3 and markedly

attenuated kainate-induced astrogliosis (Fig. 5). Together, these

observations indicate that activation of STAT3, like the induction

Figure 8. Enhanced expression of proinflammatory ligands results from neurotoxicity-induced damage: evidence from
neuroprotective agents. Mice were administered MPTP, METH, or KA alone or after pretreatment with nomifensine (for MPTP), ethanol (for
METH) or diazepam (for KA). Mice were killed at 12 hours post dosing. Total RNA was prepared from striatum (MPTP and METH) or hippocampus (KA)
for qRT-PCR analysis of Tnf-a, Osm, Ccl2 or Lif. All data points represent mean 6 SEM, N = 5. * denotes statistical significance of at least p,0.05 for the
neurotoxicant alone or pretreated groups compared to saline controls and # denotes statistical significance of at least p,0.05 for neuroprotectant
pretreated groups compared to neurotoxicant only exposed groups. Statistical significance was measured by two-way ANOVA with Fisher’s LSD
Method of post hoc analysis. See Methods for dosing regimen (single dose METH). Data for Osm and Lif in the MPTP groups was taken from Fig. 8 in
Sriram et al., (2004) [12].
doi:10.1371/journal.pone.0102003.g008
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of astrogliosis, results from neuronal damage caused by multiple

mechanistically diverse neurotoxicants that damage different

regions of the brain.

Conditional deletion of STAT3 blocks neurotoxicant-
induced GFAP up regulation

Data presented in the previous figures provide a correlational

implication for a role of STAT3 in the induction of astrogliosis. If

STAT3 signaling plays a causal role in neurotoxicant-induced

astrogliosis, then its ablation in astrocytes by conditional gene

deletion should block the astroglial response to neurotoxic insult.

Using the same STAT3 conditional knock-out (CKO) mice

previously shown to attenuate the up regulation of GFAP and

associated astrogliosis in a spinal cord injury model [17], we found

that basal expression of GFAP in striatum was attenuated and the

enhanced expression of GFAP in response to MPTP-induced

dopaminergic neurotoxicity was markedly attenuated (Fig. 6). The

lack of an induction of GFAP in response to MPTP was unlikely to

be related to an effect of the conditional STAT3 deletion on

MPTP-related dopaminergic neurotoxicity because tyrosine hy-

droxylase, a marker of dopaminergic nerve terminals in striatum,

was decreased to the same degree in CKO mice treated with

MPTP.

STAT3 activation is preceded by enhanced expression of
proinflammatory ligands upstream of JAK2/STAT3 in
multiple models of neurotoxicity

It is well known that cytokines can activate the JAK2/STAT3

pathway (see reviews: [40,41]). Up regulation of gp130-and related

cytokines associated with the activation of the JAK2/STAT3

pathway precedes activation of STAT3 and astrogliosis in the

MPTP model of neurotoxicity [12]. These prior observations were

suggestive of a signaling role of proinflammatory cytokines in

mediating or modulating the induction of astrogliosis. Here we

evaluated proinflammatory cytokine/chemokine expression pro-

files associated with other models of striatal neurotoxicity and

determined if similar responses would be observed with hippo-

campal neurotoxicity models. Rapid and large-fold up regulation

of Tnf-a, Osm, Ccl2 and Lif were confirmed for MPTP and

METH neurotoxicity exposures (Fig. 7). In addition to METH,

AMP and its substitutes, MDA and MDMA, also caused the rapid

induction of these same proinflammatory signals. The time course

of these signaling events preceded the time course for activation of

STAT3 and the induction of Gfap mRNA and GFAP protein (see

Fig. 1). Similarly, the hippocampal neurotoxicants, KA and TMT,

also resulted in enhanced expression of mRNA for the same

cytokines/chemokines (Fig. 7), prior to the onset of the activation

of STAT3 and the induction of Gfap mRNA or GFAP protein

(Fig. 2). Together, these data indicate that mechanistically diverse

neurotoxic exposures damaging two different brain regions all

result in the enhanced expression of proinflammatory cytokines

upstream of STAT3 prior to induction of GFAP and associated

astrogliosis.

Figure 9. Anti-inflammatory treatment with CORT suppresses enhanced expression of proinflammatory ligands in multiple models
of neurotoxicity. Mice were administered MPTP, METH, or TMT alone or after pretreatment with CORT (20 mg/kg, s.c.) 30 minutes earlier. Mice were
killed at 12 hours post dosing. Total RNA was prepared from striatum (MPTP and METH) or hippocampus (TMT) for qRT-PCR analysis of Tnf-a, Osm,
Ccl2 or Lif. All data points represent mean 6 SEM, N = 5. * denotes statistical significance of at least p,0.05 for the neurotoxicant alone or CORT
pretreated groups compared to saline controls and # denotes statistical significance of at least p,0.05 for CORT- pretreated groups compared to
neurotoxicant only exposed groups. Statistical significance was measured by two-way ANOVA with Fisher’s LSD Method of post hoc analysis. See
Methods for dosing regimen (single dose METH).
doi:10.1371/journal.pone.0102003.g009
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Enhanced expression of proinflammatory ligands results
from damage associated with multiple models of
neurotoxicity: evidence from neuroprotective agents

If enhanced expression of proinflammatory cytokines/chemo-

kines upstream of STAT3 is linked to damage, then neuroprotec-

tive agents that prevent damage should prevent enhanced

expression of these proinflammatory mediators, as well as

activation of STAT3 and astrogliosis. To address this question,

we again used nomifensine, ethanol and diazepam to protect

against MPTP, METH and KA neurotoxicity, respectively (Fig. 8).

Pretreatment with nomifensine and ethanol completely blocked

the enhanced expression of Tnf-a, Osm, Lif and Ccl2 associated

with MPTP and METH neurotoxicity, respectively. Diazepam

blocked the expression of Osm in the KA neurotoxicity model. Lif
was not affected by diazepam in the KA model. While these data,

in general, are consistent with a relationship among the expression

of proinflammatory mediators and damage resulting from MPTP,

METH and KA, the lack of significant protection by diazepam

against KA induced expression of Tnf-a and Ccl2 demonstrate a

lack of complete concordance. Moreover, the complete lack of

protection of diazepam against expression of Lif in the KA model

is not consistent with the at least partial protection of diazepam

against KA-induced activation of STAT3 and elevation in GFAP

(Fig. 5), i.e. the diazepam protection data for KA may indicate that

the proinflammatory response can be separated from the damage

response. Data for nomifensine neuroprotection against induction

of Osm and Lif in the MPTP model were taken from Sriram et al.,

(2004) [12].

Anti-inflammatory treatment with CORT suppresses the
enhanced expression of proinflammatory ligands
upstream of STAT3 in multiple models of neurotoxicity

Because neuroprotective agents that block or suppress neuro-

toxicity due to MPTP, METH, and KA also block or suppress the

enhanced neuroinflammatory effects associated with these agents,

it follows that neuroinflammatory mediators upstream of STAT3

play a role in neurotoxicant-induced damage. To begin to

examine this issue, we determined if the classic species-specific

anti-inflammatory glucocorticoid, CORT, would suppress the

neuroinflammatory response associated with diverse neurotoxic

exposures (Fig. 9). CORT (20 mg/kg, s.c.) administered 30

minutes prior to MPTP, METH or TMT suppressed the

expression of Tnf-a, Osm, Ccl2 and Lif associated with the

neurotoxic effects of these agents. These data suggested that the

acute dosage of CORT had the desired anti-inflammatory effect

on neurotoxicant-associated neuroinflammation.

Figure 10. Anti-inflammatory treatment with CORT does not suppress activation of STAT3, GFAP expression, or neurotoxicity. Mice
were administered MPTP, METH, or TMT alone or after pretreatment with CORT (20 mg/kg, s.c.) 30 minutes earlier and killed at the post-dosing times
indicated. Mice were killed by focused microwave irradiation to preserve steady-state phosphorylation of pSTAT3tyr 705 and striatal phosphorylation
was analyzed by quantification of scans of pSTAT3tyr705 immunoblots. Representative immunoblot data from two different animals for each dosing
groups are presented above the quantitative data obtained from scans. Separate groups of mice killed by decapitation were used to prepare total
striatal protein homogenates for ELISA of GFAP and TH. All data points represent mean 6 SEM, N = 5. * denotes statistical significance of at least p,
0.05 for the neurotoxicant alone or CORT pretreated groups compared to saline controls and # denotes statistical significance of at least p,0.05 for
CORT- pretreated groups compared to neurotoxicant only exposed groups. Statistical significance was measured by two-way ANOVA with Fisher’s
LSD Method of post hoc analysis. See Methods for dosing regimens (single dose METH).
doi:10.1371/journal.pone.0102003.g010
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Anti-inflammatory treatment with CORT does not
suppress activation of STAT3, GFAP up regulation, or
neurotoxicity

To determine if suppression of the neuroinflammatory respons-

es associated with MPTP, METH, and TMT neurotoxicity

suppressed activation of STAT3, astrogliosis, and neurotoxicity,

we again administered CORT (20 mg/kg, s.c.) prior to MPTP,

METH, and TMT (Fig. 10). This anti-inflammatory treatment

shown to suppress neuroinflammation in these neurotoxicity

models (Fig. 9), failed to affect the activation of STAT3, induction

of GFAP, or loss of TH in the MPTP and METH models of

striatal neurotoxicity in the mouse, and also failed to suppress the

activation of STAT3 and induction of GFAP in the TMT model

of hippocampal neurotoxicity in the rat (Fig. 10). Together with

the data in Fig. 9, these findings indicate that damage caused by

diverse neurotoxicants induces neuroinflammation but that such

neuroinflammation is not necessarily responsible for the damage-

associated activation of STAT3, astrogliosis or neurotoxicity. The

data obtained for MPTP and METH are consistent with our data

showing suppression of neuroinflammation by minocycline, a non-

traditional immunosuppressant [42], in the MPTP and METH

models without affecting neurotoxicity [27].

Pro-inflammatory treatment with LPS results in enhanced
expression of proinflammatory ligands, and a CORT-
suppressible activation of STAT3, but not GFAP up
regulation

Taken together, the previous data indicate that damage due to

exposure to diverse neurotoxicants initiates neuroinflammation

but the observed neuroinflammatory responses were not linked to

activation of STAT3 and associated astrogliosis. Given these

observations, it seemed possible that activation of STAT3 also

could be dissociated from damage and astrogliosis, despite the fact

that multiple neurotoxicity models result in STAT3 activation

temporally linked to induction of GFAP. To examine this

possibility, we employed an acute exposure to the known

inflammogen, LPS, to induce neuroinflammation (Fig. 11). Our

prior experience suggested that acute administration of LPS did

not cause neurotoxicity or astrogliosis in any brain region (data not

shown). Acute LPS (2 mg/kg, i.p.), as expected, resulted in

enhanced expression of the proinflammatory cytokines/chemo-

kines, Tnf-a, Osm, Ccl2 and Lif (Fig. 11); data are shown for

mouse striatum, but similar results were observed for other brain

areas (data not shown). LPS also activated STAT3 over a 12-hr

post exposure period. The activation of STAT3 by LPS, unlike the

activation associated with multiple models of neurotoxicity, was

suppressible by acute pretreatment with CORT. The neuroin-

flammation and activation of STAT3 resulting from acute

Figure 11. LPS enhances expression of proinflammatory ligands, CORT-suppressible activation of STAT3, but not expression of
GFAP. Mice were administered LPS (2 mg/kg, s.c.), CORT (20 mg/kg) or CORT (20 mg/kg) 30 minutes prior to LPS (2 mg/kg). Mice were killed at the
post-dosing times indicated or at 6 hours post dosing for the LPS and CORT/LPS groups analyzed for pSTAT3tyr 705. Mice were killed by focused
microwave irradiation to preserve steady-state phosphorylation of pSTAT3tyr 705 and striatal phosphorylation was analyzed by quantification of scans
of pSTAT3tyr705 immunoblots. Separate groups of mice were used to prepare total striatal RNA from one side of the brain for qRT-PCR analysis of Tnf-
a, Osm, Ccl2 or Lif and to prepare total striatal protein homogenates from the other side of the brain for ELISA of GFAP. All data points represent mean
6 SEM, N = 5. * denotes statistical significance of at least p,0.05 for the LPS alone and CORT/LPS groups compared to saline and # denotes statistical
significance of at least p,0.05 for CORT- pretreated LPS group compared to LPS only exposed group. Statistical significance was measured by one or
two-way ANOVA. Where significant differences were found, Fisher’s LSD Method of post hoc analysis was performed. See Methods for other details
on dosing regimens.
doi:10.1371/journal.pone.0102003.g011

STAT3 Regulates Astrogliosis Induced by Neurotoxicity

PLOS ONE | www.plosone.org 12 July 2014 | Volume 9 | Issue 7 | e102003



administration of LPS did not affect the expression of GFAP in

any brain region over a 72-hour time period (striatal data shown).

It was possible that the dosage and route of administration of LPS

we used were not sufficient to affect GFAP, as has been previously

reported [5]. Therefore, we administered LPS at 1–5 mg/kg, i.p.

and assayed GFAP levels in multiple brain regions at 24 hours

post exposure (Fig. 12). GFAP was not affected at any dose in any

region examined (Fig. 12). Together, these data serve to indicate

that ‘‘acute phase’’ neuroinflammation caused by LPS can activate

STAT3 without resulting in the classic feature associated with

astrogliosis (increased GFAP), findings consistent with gene

expression events shown for LPS, in vitro, without accompanying

increases in GFAP [43]. Thus, the STAT3 pathway appears to

serve as a dual ‘‘switch’’ for mediating acute neuroinflammatory

responses separate from its role in mediating damage-induced

astrogliosis.

Discussion

We demonstrate that the STAT3 pathway in astrocytes is

activated in diverse models of neurotoxicity-initiated astrogliosis,

regardless of the underlying mechanism of damage or the regional,

cellular or subcellular targets affected by each neurotoxicant.

Activation of STAT3 (phosphorylation at Tyr705) ensues rapidly

after the onset of neurotoxicity and prior to the induction of

GFAP, a STAT3 regulatory target [44,45]. Activation of STAT3

and subsequent induction of GFAP results from damage to

neuronal targets, not effects on astrocytes themselves, as protecting

neuronal targets from neurotoxicity also protects against activation

of STAT3 and enhanced expression of GFAP. Consistent with

these observations, STAT3 activation is restricted to the targeted

brain region, associated with translocation to the nucleus of

astrocytes after MPTP [12], METH and KA and its deletion in a

conditional knock-out abolishes the expression of GFAP in the

MPTP neurotoxicity model. Thus, based on our data obtained

with the multiple neurotoxicants examined to date, pSTAT3tyr705

appears to be a key signaling event underlying astrogliosis resulting

from divergent types of neurotoxicity affecting different CNS

targets. The ‘‘acute phase’’ response [46] exemplified by systemic

exposure to endotoxin (LPS) [47] also results in neuroinflamma-

tion and activation of the STAT3 pathway [48] but, in our hands,

without the up regulation of GFAP, a hallmark of reactive

astrogliosis, findings suggestive of a dissociation of the early

neuroinflammatory/microglial response to systemic infection from

the astroglial reaction linked to underlying neural damage. These

findings are summarized in Figure 13. In aggregate, our findings

not only support a general role of pSTAT3tyr705 in astrogliosis

signal transduction, but also suggest that pSTAT3tyr705 serves as

an early and broadly applicable biomarker of neurotoxicity.

Activation of STAT3 in response to systemic inflammation may

subserve a different role distinct from astroglial activation in

response to neural damage.

Relationship among enhanced expression of
proinflammatory mediators, activation of STAT3 and
astrogliosis

Our prior data with the MPTP neurotoxicity model was

suggestive of a role of proinflammatory cytokines/chemokines as

upstream effectors in the astrocytic JAK2/STAT3 cascade [12].

STAT3 is a major signaling component in inflammatory responses

[16,21,49–51] and proinflammatory cytokines that signal through

gp130 cause its dimerization and activation of JAK2, which in

turn phosphorylates Y705 on STAT3, triggering its translocation

to the nucleus [52,53]. Consequently, in the present study with

multiple neurotoxicants, as well as with the prior one limited to

MPTP, we examined the expression of gp130 ligands known to

activate the STAT3 pathway. In agreement with others [54], we

indeed found large-fold increases in the gp130 ligands, Osm and

Lif, across all of the diverse neurotoxic exposures with expression

time courses preceding those of pSTAT3tyr705 and of GFAP,

observations suggestive of upstream effector roles for these ligands

in the activation of the STAT3 signaling pathway and astrogliosis.

Large increases also were seen in Tnf-a and Ccl2 across the

various neurotoxicity models and these proinflammatory media-

tors could influence STAT3 signaling through various cross-talk

pathways (e.g., [13,55]). Our findings indicate that STAT3 is a

participant in neurotoxicity-induced astrogliosis because protect-

ing against neurotoxicity in multiple models blocks or greatly

Figure 12. Pro-inflammatory treatment with peripherally
injected LPS does not result in increased levels of GFAP at
24 h. Mice were administered LPS (1–5 mg/kg, i.p.) and killed at
24 hours post dosing. Total brain region homogenates were assayed for
GFAP by ELISA. All data points represent mean 6 SEM, N = 5. Statistical
significance was measured by one-way ANOVA. See methods for dosing
regimen.
doi:10.1371/journal.pone.0102003.g012
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attenuates activation of STAT3 in addition to the induction of

GFAP. Moreover, eliminating STAT3 in a conditional knockout

nearly abolishes neurotoxicity-related expression of GFAP. Roles

for gp130 ligands in the induction of astrogliosis are less clear.

The data for all the neurotoxic insults we employed show a

consistent up regulation of Tnf-a, Osm, Ccl2 and Lif with a

temporal profile that precedes activation of STAT3 and an

enhanced expression of GFAP, findings consistent with microglial

activation in response to neurotoxicity [56]. While these effects

Figure 13. Different neurotoxic insults damage neurons in different brain areas, leading to astrocyte and microglia activation.
Activation of STAT3 (pTYR 705) represents a signaling event common to neurotoxic insults and neuroinflammation. Neurotoxicity-related damage
results in astrogliosis dependent on activation of STAT3 but does not require upstream signaling from proinflammatory cytokines and chemokines.
Suppression of this neuroinflammatory response to neurotoxicity does not affect expression of GFAP or pSTAT3. LPS causes brain-wide
neuroinflammation (represented by flames) characterized by activation of microglia and elaboration of proinflammatory cytokines/chemokines but
not neurodegeneration. Neuroinflammation-related activation of microglia due to LPS does not lead to astrogliosis but also is associated with
activation of STAT3 suppressible by glucocorticoids. Neuroinflammation likely activates a separate STAT3 pathway, perhaps in microglia.
Identification of upstream effectors in these STAT3 pathways will aid in defining and manipulating signal transduction events that likely play roles in
repair and neuroimmune responses.
doi:10.1371/journal.pone.0102003.g013
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clearly are related to neurotoxicity because they are blocked or

attenuated by neuroprotectants, our data do not define the source

of their expression or demonstrate their role in STAT3 signaling,

beyond a correlative time course. To address the potential linkage

between cytokine/chemokine expression and astrogliosis we

suppressed the proinflammatory responses resulting from MPTP

and METH neurotoxicity by pretreating with the tetracycline-like

anti-inflammatory compound, minocycline [27]. While minocy-

cline was effective in down-regulating the expression of all

cytokines/chemokines examined [27], it did not affect MPTP-

or METH-induced damage to dopaminergic nerve terminals, nor

did it alter astrogliosis as assessed by quantification of GFAP.

These data were suggestive of a dissociation of damage-related

microglial activation responses from subsequent influences on

neurotoxicity or the induction of astrogliosis. The data obtained in

the present study support this line of reasoning because

suppression of the expression of Tnf-a, Osm, Ccl2, and Lif by

acute pretreatment with the classic glucocorticoid anti-inflamma-

tory hormone, CORT, did not affect activation of STAT3, or

induction of GFAP in MPTP, METH and TMT models of

neurotoxicity. Suppressing neuroinflammation with CORT also

failed to suppress neurotoxicity due to MPTP and METH,

observations consistent with our prior finding with minocycline in

these models [27]. These data show that, at least for the case of

relatively selective neurotoxicity, damage results in neuroinflam-

mation but this constellation of proinflammatory responses does

not lead to activation of the STAT3 pathway or the induction of

astrogliosis, nor does neuroinflammation contribute to neurotox-

icity. These findings imply that neurodegeneration-induced

microglial activation can occur independently of astroglial

activation and that neurodegeneration causes neuroinflammation

but neuroinflammation does not necessarily contribute to

neurodegeneration. Indeed, this view is consistent with a role of

acute neuroinflammation in the initiation of regenerative respons-

es to neural injury [57,58].

Relationship among neuroinflammatory responses to
LPS, activation of STAT3 and astrogliosis

Systemic LPS results in an acute phase response that includes

activation of CNS microglia [59] and the brain-wide elaboration

of proinflammatory cytokines and chemokines (e.g., [60]).

Activation of STAT3 in the CNS also has been reported after

systemic administration of LPS [48,61,62]. Because the relation-

ship among neuroinflammation, STAT3 activation and astro-

gliosis, in the absence of CNS damage remains unclear, we

examined whether LPS-induced neuroinflammation would acti-

vate STAT3 and result in up regulation of GFAP as a marker of

astrogliosis. Large-fold increases in expression of the four

proinflammatory mediators affected by our panel of neurotox-

icants also were seen after LPS, but an activation of STAT3

followed without an induction in GFAP. Moreover, unlike the

activation of STAT3 and induction of GFAP seen after neurotoxic

exposures, suppression of pSTAT3 levels could be achieved with

anti-inflammatory pretreatment with CORT. While evidence has

been presented suggesting that LPS can over longer times cause

neural damage [5,63–66] and accompanying astrogliosis [67–69],

our findings here and previously [70], are consistent with an acute

and subacute elaboration of cytokines and chemokines as a

component of an innate immune response in brain [47,71]. These

neuroinflammatory effects of LPS may reflect a direct action on

astrocytes without up regulation of GFAP [43] over acute and

subacute times of 2 to 72 hours, or alternatively may reflect an

effect on STAT3 in microglia (Fig. 13). Microglial activation

responses, e.g. those mediating sickness behavior [22] represent

neuroimmune signaling that occur in the absence of brain damage

[59] and would not, therefore, be expected to be accompanied by

astrogliosis. Subsequent changes in GFAP at more chronic times

after LPS may reflect indirect reactive responses of astrocytes to

long term effects of LPS on other cells, including potential

neurodegenerative effects.

In aggregate, our data for neurotoxic exposures add to the

mounting evidence from other injury models showing that STAT3

signaling plays a dominant role in reactive gliosis [12,72–74].

While brain damage also initiates neuroinflammation, as noted

above, this latter response does not initiate astrogliosis. Neverthe-

less, CORT suppressible neuroinflammation in the absence of

damage may activate STAT3, perhaps in other cell types besides

astrocytes (e.g., microglia), a possibility that could be addressed in

future studies using the astrocyte specific STAT3-CKO mice

treated with LPS. We can conclude at this juncture that when

STAT3 activation is observed in the CNS, it may subserve

different roles depending on whether underlying neural damage is

involved as opposed to neuroinflammation alone.

Astrocyte heterogeneity now is becoming recognized at both the

molecular and cellular levels [75]. This heterogeneity also

encompasses astrocytic responses to injury across a variety of

damage models [8] Following traumatic injury, for example,

astrogliosis phenotypes differ with respect to the distance from the

site of injury and with respect to an involvement of a proliferative

response associated with astrocytic scarring [15]. These observa-

tions likely reflect a gradient of diffusible signals from blood

emanating from sites of BBB disruption [15,76]. STAT3 signaling

in astrocytes appears to be an obligatory component underlying all

these various reactive astrocytic responses to traumatic brain

injury. The neurotoxic insults employed in the present study differ

substantially from traumatic brain damage in that BBB is

preserved, a proliferative response is not observed even with

substantial neuronal damage (e.g. TMT, [77]) and the reactive

response is short-lived and resets to pre-exposure levels. Despite

these differences compared to traumatic injury, STAT3 activation

remains a common feature, findings suggestive of common

signaling modules. The glucocorticoid suppressible STAT3

pathway associated with neuroinflammation appears to represent

an alternate STAT3 pathway from the one involved in injury

(traumatic, neurotoxic, or disease). Clearly, an increased under-

standing of the diverse signaling molecules responsible for STAT3

activation in the CNS will be required to selectively affect its role

in astrogliosis and neuroinflammation.
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